

Establishing the HPC Hardware Lab @Durham

Durham University

Alastair Basden, Peter Draper, Mark Lovell, Fawada Qaisir, Richard Regan, Paul Walker

Alastair Basden
DiRAC / Durham University

Durham
University

Institute for Computational
Cosmology

DiRAC
High Performance
Computing Facility

ExCALIBUR
10

- HPC Hardware Lab hosted by:
 - the COSmology MAchine
 - Est. 2001
 - The DiRAC Memory Intensive service
 - primarily covering STFC science
 - Alongside the 3 other DiRAC systems
 - 3 generations currently in operation
 - Newest being COSMA8
 - ~70k cores, 0.5PB RAM, 20PB storage, 26PB tape
 - Bespoke design appropriate for main workloads
 - Tier-1 national service

DiRAC

- Established 2009
- Provides HPC to the STFC theory community
 - Particle Physics, Astrophysics, Cosmology, Solar System and Planetary Science and Nuclear Physics
- Three services:
 - Extreme Scaling: Edinburgh (TURSA)
 - Data Intensive: Cambridge and Leicester (CSD3 and DiaL)
 - Memory Intensive: Durham (COSMA)
- Co-designed and tailored for specific workloads
 - Bespoke systems for the science being carried out

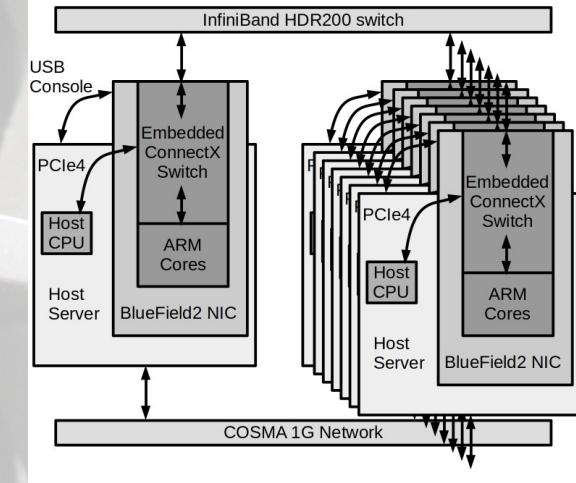
HPC Hardware Lab @Durham

- Mission: Provide access to the latest HPC hardware to users and DRI/RTP professionals from across the UK
 - For code testing, performance tuning and debugging
 - To advise on purchase of future technologies
 - To allow informed decisions to be made whenever funding appears
- Accessible to all
 - Single authentication system to lots of novel hardware
- An emphasis on production/going live
 - No shelf-ware!

History

- Came together almost by accident
 - 2019: Intel provide a 56-core 6TB Cascade Lake system
 - For testing Non-volatile DIMM performance (Apache Pass)
 - 2019: University funding for the DINE cluster
 - 16 node BlueField DPU test system
 - 2019: ExCALIBUR announced, with a H&ES component
 - Hardware and Enabling Software: \$4.5m
 - Perfect timing for the hardware lab
 - Followed by multiple H&ES awards, and from other sources

Establishing the Lab


- Took a while to realise we had a Lab!
 - Hardware running alongside COSMA
 - Piggybacking on account creation, home space etc
 - Easy to make accessible to users
 - Eventually realised we had something that people wanted!
 - Demand continues to grow

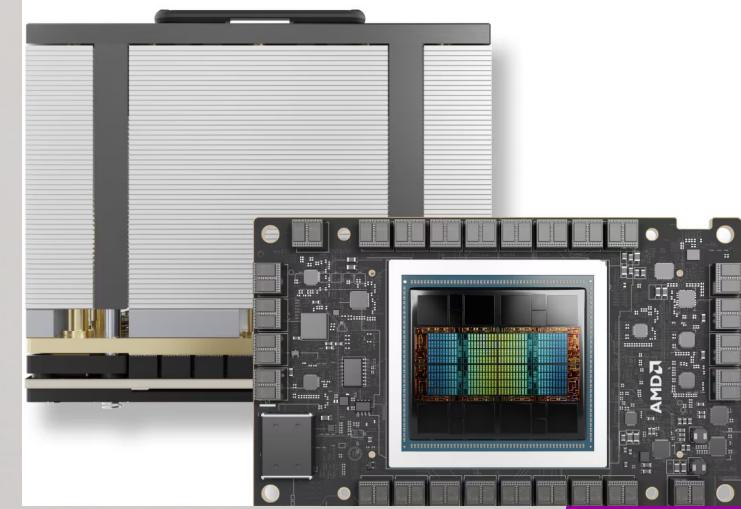
Hardware Lab Components

- Two test clusters:
 - DINE: Durham Intelligent Networking Environment
 - DINE2: Durham Integrated Next-gen Environment
- CPU compute
 - X86, ARM
- GPU compute
 - NVIDIA, AMD, Intel
- Composability
- Networking
- Storage laboratory
- Environmental
 - Solar panel installation
 - Immersion cooling
 - Heat storage
 - Logging and awareness
- Quantum

DINE

- Durham Intelligent Network Environment*
 - A 24 node (initially 16) system for investigation of networking technologies
 - And other things
 - 32 cores and 512GB RAM per node, AMD ROME
- Has hosted (since 2019):
 - BlueField-1
 - BlueField-2 (host-separated and embedded modes)
 - Rockport 100G 6D Torus Ethernet network
- Investigating feasibility of charging by kWhr from April
- Funded by Durham, DiRAC, ExCALIBUR
- A small cluster to accept hardware is useful!

DINE-2

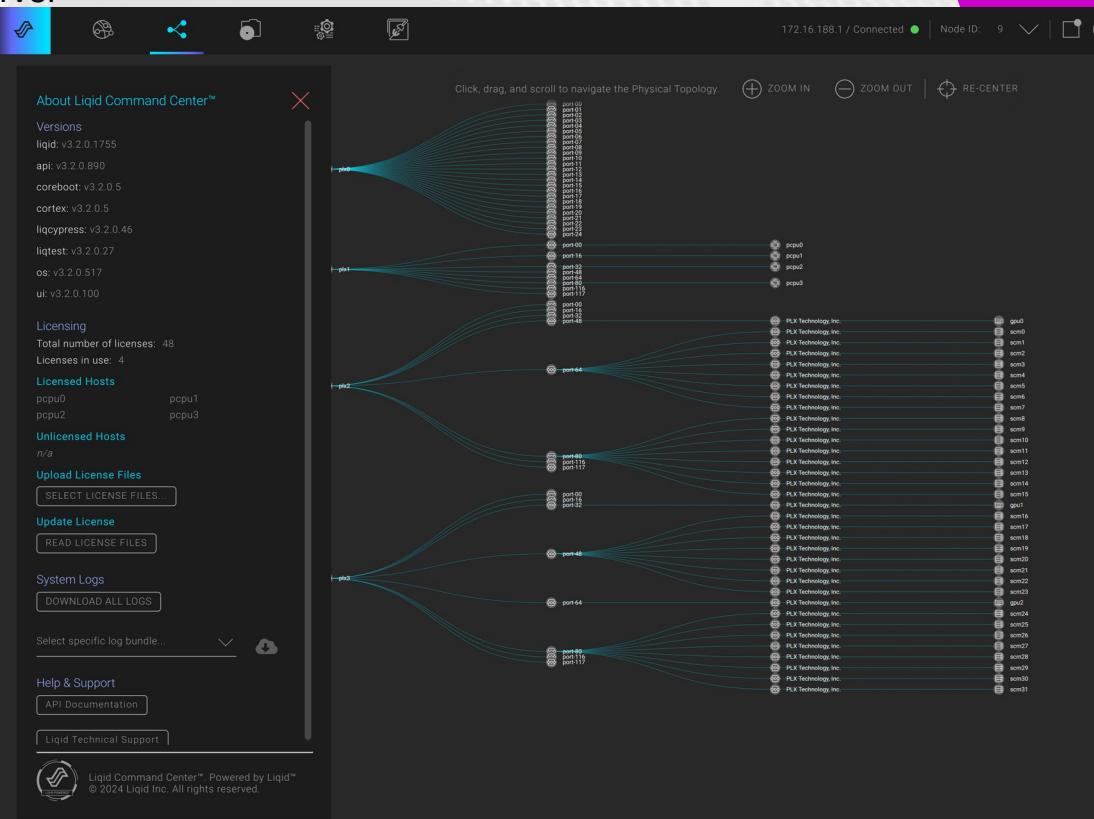

- Durham Integrated Next-gen Environment
 - 8 node Intel Sapphire Rapids system
 - 64 cores, 2TB RAM per node
 - Currently hosts a CerIO composable PCIe-5 fabric
 - 8x NVIDIA GPUs, assignable in any number to any host
 - 400G Ethernet fabric (800G switch)
- Also part of the kWhr charging/allocation study
- Funded by DiRAC, IRIS and SKA
- Lack of PCIe slots

CPU compute

- Providing users with access to cutting edge CPU technologies:
- Coming soon: AMD Turin
- AMD Genoa and Bergamo
- NVIDIA Grace
- Intel Emerald Rapids, Sapphire Rapids, Ice Lake
- AMD Milan-X (extreme cache version: 768MB L3 cache)
- AMD Milan, Rome
- Intel Cascade Lake (with Apache Pass RAM, 6TB)
- Funded by OEMs, Intel, AMD, Dell, DiRAC, ExCALIBUR

GPU Compute

- Access to small numbers of latest (and not-so latest) GPUs
- AMD MI300X
 - 8x MI300X, cache coherent global address space
- AMD MI300A
 - 4x MI300A, APU, global RAM
- AMD MI210, MI100, MI50
 - MI50 were not well used - ensure there is demand!
- NVIDIA H100 (Grace-hopper system)
 - PCIe version also coming soon, X86
- NVIDIA A100, A30, V100
- Intel Ponte Vecchio
- Direct ssh (including Jupyter) and queue-based access
 - Difficulties arising from single node systems
- Funded by Dell, AMD, Intel, DiRAC, ExCALIBUR, IRIS
- Coming soon: NVIDIA RTX6000

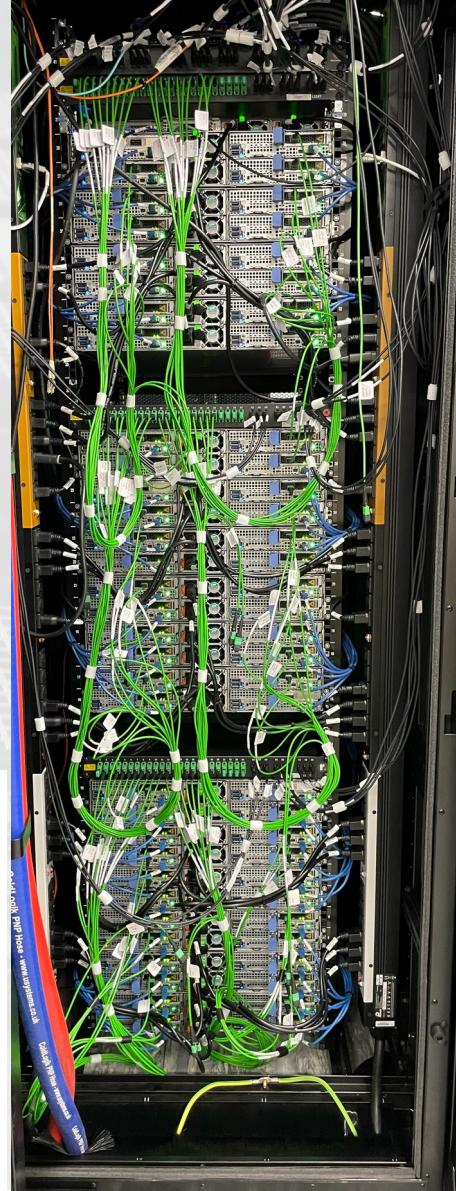
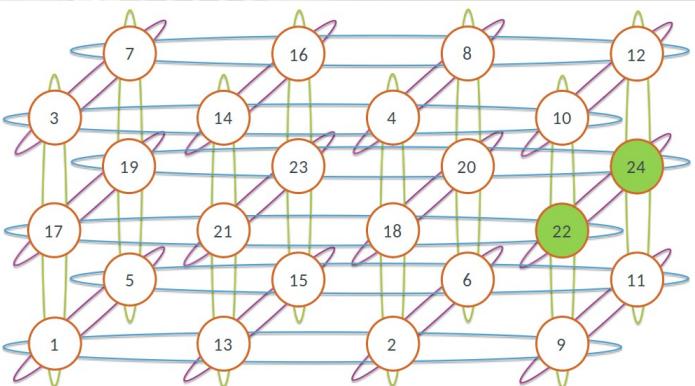

Credit: AMD

Composability

- Infrastructure-as-a-service
 - The ultimate goal for commercial cloud-type systems
 - Is it relevant for HPC?
 - How does performance suffer?
 - Is it stable?
 - What are the use cases?
- 2 composable systems
 - And a Gen-Z test system
 - Defunct: technology transferred to CXL
 - Key learning point: Use higher TRLs
 - We are not suited for hardware development or early kit

Liquid composable system

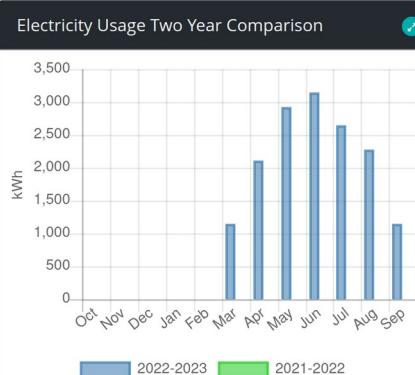
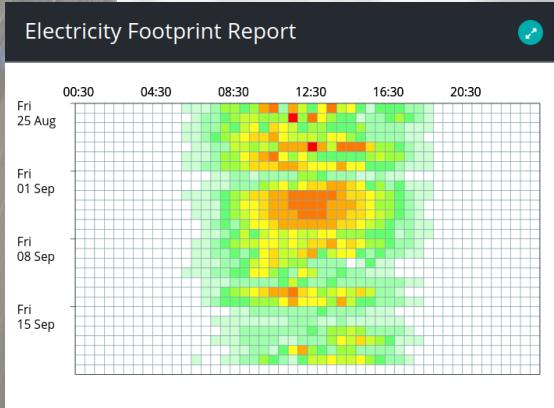
- Installed 2021
- A PCIe4-based composable fabric: 4 lanes to each server
- 3 A100 GPUs shared between 4 servers
 - Including a login node
 - GPUs per node can be changed in a few clicks
- 12TB RAM shared between these servers
 - Can be changed and reconfigured
- Positives: It works, can allow high RAM/GPU configs
- **Negatives:**
 - Bandwidth is shared
 - GPUs sometimes fail requiring a full stack reboot
 - RAM/kernel issues (and no Rocky9 support yet)
 - Rack-scale limitations
 - Bottlenecks
- ExCALIBUR funded



CerIO composable system

- Installed 2024
- PCIe5-based fabric
 - No central switch: Uses a flit-based torus topology
 - Full data centre scalability
 - 200Gb/s to nodes
 - 300Gb/s inter-card bandwidth
- 8 compute nodes, 8x A30 GPUs, 16TB RAM
- **Initially didn't work! - not always possible to rush into production**
 - Now stable (firmware updates, co-design)
 - Expansion pending
 - Some downsides (reboots, etc)
- IRIS/SKA/ExCALIBUR/DiRAC

Network fabrics

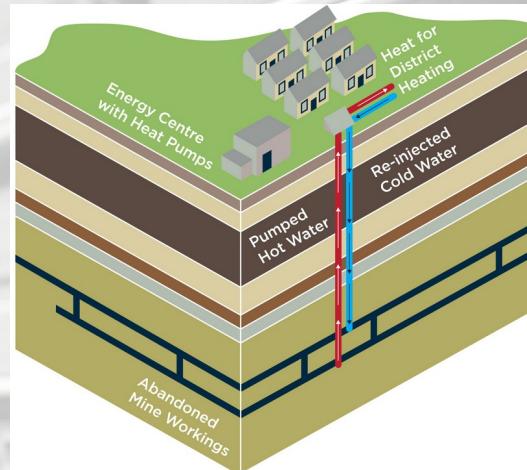
- Rockport 6D Torus network
 - A “switchless” fabric for 100G Ethernet
 - Trailed on DINE in 2021
 - Installed on COSMA7 in 2022
 - 224 nodes (half the cluster) replaced IB
 - Allows direct comparison of fabrics
 - At full HPC problem-size scale
 - Works well
 - Performance comparable to InfiniBand
 - For real workloads
 - Handles congestion well
 - EXCALIBUR/DiRAC funded
- 800G Ethernet fabric
 - 400G to nodes
 - On the DINE2 cluster



Storage sub-lab

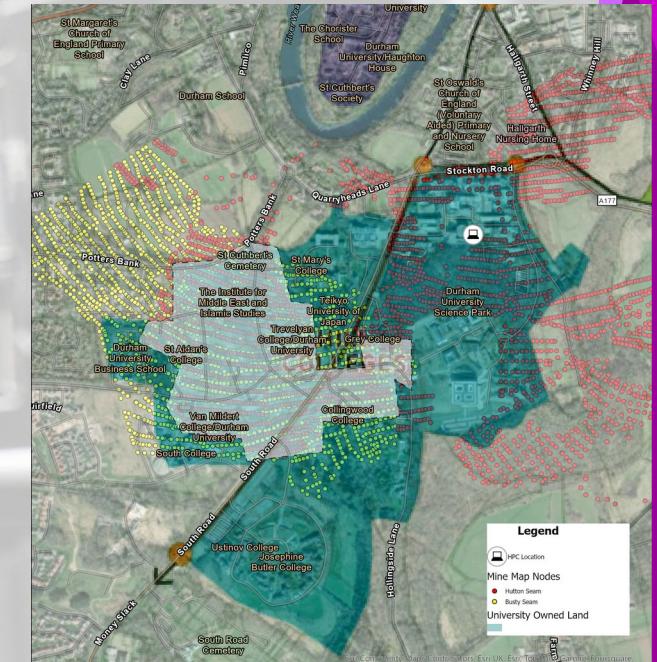
- Various different storage technologies
- High-performance scratch Lustre (NVMe)
- DAOS (NVMe)
- Ceph
- StorJ private cloud
- VAST (NVMe)
- Globus (data transfer)
- Lustre (efficient bulk storage)
- Tape: Atempo Miria
- NVMe RAID test systems
- Funded by DiRAC/IRIS/SKA/ExCALIBUR

Environmental-related

- HPC is a huge energy user
 - COSMA ~1MW at peak
 - (~5GWh/year, ~120T CO₂, 70 people crossing the Atlantic and back)
 - Responsibility to keep this as low as possible
- 2023: Installation of ~£1m solar panels
 - Funded by DiRAC
 - Investigation into the interplay between supply and demand
 - And how to engage with Estates

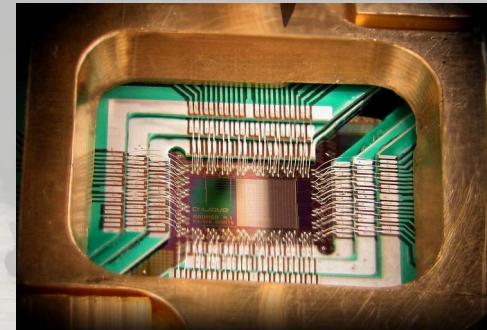

Cooling sub-lab

- A sequence of technologies:
 - Hot aisle (2006?)
 - Passive cooled rear doors (pre 2010)
 - Active cooled rear doors (2018)
 - Direct liquid cooling (2020)
 - Immersion cooling (2025)
 - As a national object-of-study
 - Support for visits to Durham for operators to learn this technology
 - Reduced operational and embodied CO₂
- Free air coolers: 12kW to cool 800kW load
 - Dependent on external temperature



Mine water heat storage

- The ICHS project
 - Storing waste heat in flooded mines
 - For reuse during the winter



Alastair Basden
DiRAC / Durham University

Quantum computing

- No quantum compute in Durham (yet)
- However, the hardware lab administers national access to:
 - DWAVE quantum annealer (expired)
 - QuEra neutral atom quantum computer
- Quantum for HPC acceleration
 - This is becoming feasible
- ExCALIBUR funded

Operational costs

- Generally swallowed up in other things
 - Electricity
 - Installation
 - Maintenance
 - Updates, improvements, etc
 - There is currently no ideal UKRI method

Hardware Lab Outputs

- Key outputs from the hardware lab are:
 - Up to date knowledge of performance on new technologies
 - Experience profiling and optimising codes
 - Code preparation for future systems
 - Training on new technologies and tools
 - User awareness
 - Input into future system design

Future plans*

- Bespoke AI accelerators
- Lower spec GPUs
- Turin CPU system
- CXL composable systems
 - Large shared-memory fabrics
- Ultra-Ethernet fabric

* dependent on funding!

Accessing the hardware lab

- Sign up on SAFE:
 - safe.epcc.ed.ac.uk/dirac
- Apply to join an appropriate project code: (durham.readthedocs.io)
 - do009: General purpose
 - do015: Cerio compstable system
 - do016: NVIDIA GPUs
 - do017: Intel GPUs
 - do018: AMD GPUs
- We are not too prescriptive to users: no agreements, SLAs, etc, low barriers to use
 - We like feedback, but don't push too heavily for it

Conclusion

- The Durham HPC Hardware Laboratory
 - Accessible for UK researchers
 - Account creation on SAFE
 - Single login
 - HPC environment
 - Cutting edge technologies
 - Let us know if there is something of particular interest
 - Always happy to host!