

Oxford ARC Provision Experience of Jade 2.5

ACIT-Hub Training CoDesign Day 2025 – Bristol

Gregory J. L. Tourte & The ARC Team

Outline

1 Introduction

2 JADE 2.5 Technology Pilot

JADE 2.5

Hardware

Setup

Functional tests

Delays

Operational issues

About Us

- Advanced Research Computing team at the University of Oxford;
- Part of central IT services;
- Provide generic, non-subject specific, high performance computing facilities for the whole institution;
- Provide help with software installation and minimal support for use on the cluster;
- Other facilities for more subject-specific uses at departmental/division levels are also available;
- About 1300 active users, across 600 active projects;
- Provide training to HPC users from introduction to advanced uses of HPC facilities.

Oxford ARC compute estate

- ARC capability cluster (14 640 CPU cores):
 - ▶ 305x 48 core worker nodes;
 - ▶ 2x Intel Platinum 8628 24 core 2.90 GHz Cascade Lake CPUs;
 - ▶ 384 GB memory;
 - ▶ HDR 100 InfiniBand interconnect (The fabric has a 3:1 blocking factor with non-blocking islands of 44 nodes);
- HTC high throughput cluster:
 - ▶ 95x worker nodes;
 - ▶ Including 49x GPGPU nodes;
 - ▶ 2x high memory (3 TB) nodes;
 - ▶ About 20 nodes with HDR 100 interconnect;
 - ▶ 10 Gbit Ethernet;

Oxford ARC compute estate

- JADE 2.5 technology pilot cluster:
 - ▶ 3x 128 core worker nodes;
 - ▶ 2x AMD EPYC 9534 64-Core CPUs and;
 - ▶ 8x AMD MI300X GPUs;
 - ▶ 2x NDR 200 networking;
 - ▶ 32 TB NVMe SSD local scratch.

Oxford ARC storage estate

- Lenovo OnTap storage
 - ▶ NFS shared large capacity storage;
 - ▶ Project and user home areas;
 - ▶ Software repositories;
 - ▶ 4.9 PB raw (3 PiB useable) total capacity;
 - ▶ 4× 25 Gbit/s aggregated interfaces for data traffic to clients.

- Weka storage

- ▶ NVMe based storage;
- ▶ Ultra low latency;
- ▶ Used for scratch, databases, large shared datasets;
- ▶ Total of ~700 TB of usable NVMe SSD;
- ▶ Filesystem exported natively over both Ethernet and InfiniBand.

Training and Support

- Number of courses run regularly throughout the year;
- Online drop-in sessions available between courses;
- Extensive online documentation for the systems;
- Every day support via ticketing system.

Provisions Stories

- Several provision processes carried out over the last couple of years;
- Complete storage upgrade;
- new islands (partial cluster upgrades);
- JADE 2.5 Technology pilot.

Outline

1 Introduction

2 JADE 2.5 Technology Pilot

JADE 2.5

Hardware

Setup

Functional tests

Delays

Operational issues

JADE 2.5

- Technology Pilot
- Based on 24x AMD MI300 GPUs linked by infinity fabric.
- Small system — three servers (8 GPUs each).
- Aim to start onboarding users in November.
- Time will be allocated — about a month of time per partner.
- Plan to also schedule 'student weeks'.
- Primary objective is to assess the AMD GPUs' suitability for this type of research, rather than directly conducting research.
- Project allocations come with a requirement for feedback on system performance and behaviour.

Hardware

3 Lenovo ThinkSystem SR685a with:

- AMD MI300X GPUs with 192 GB GPU memory
- 8 GPU Board, linked by Infinity fabric
- 2x AMD EPYC 9534 (128 cores per server)
- 2.25 TB RAM
- 32 TB node-local 'scratch' storage
- 960 GB M.2 (RAID 1) for OS
- Networking:
 - ▶ NVIDIA ConnectX-7 NDR 200 IB
 - ▶ Mellanox ConnectX-6 Lx 25 GbE
- 8x 2600 W power supplies (2N redundancy)

Hardware

Hardware

- 8U server; weighting approximately 110 kg
- Requires 1200 mm racks.
- Estimated power draw per server:
 - ▶ 6715 W at 85 % workload
 - ▶ 7946 W at 100 %

Notable installation — first systems of this type installed in the UK.

Hold that thought.

Setup

- Systems built using ARCs existing stack (PXE, kickstart, CFEengine).
 - ▶ No significant issues during installation.
- Integrated into existing ARC infrastructure (LDAP,...).
 - ▶ Dedicated SLURM controller and SLURM database.
- Shares ARC networking and storage infrastructure:
 - ▶ HDR fabric (interconnect, fast storage).
 - ▶ WEKA file system for non-local scratch.
 - ▶ Lenovo DM3010H for 'bulk' data storage.
- Software environment:
 - ▶ ROCm installed via RPM (using AMD's repositories).
 - ▶ Managed with EasyBuild — minimal set of pre-installed toolchains.
 - ▶ Users are expected to bring (or build) their own software.

Functional tests

- ROCm Validation Suite:
 - ▶ Testing caused node crashed (more details later).
- TensorFlow container:
 - ▶ Successfully run on system — no issues observed.

Delays

- 'Equipment must be installed and invoiced by 31st July 2024'.
 - ▶ Quotes received in May; system ordered early June.
 - ▶ System delivered 11th September 2024.
- RFQ specified InfiniBand (HDR fabric).
 - ▶ SR685a initially only supported with 4× Broadcom Ethernet cards.
 - ▶ Qualification of the systems with IB cards completed just prior to delivery.
 - ▶ Systems shipped with Broadcom cards installed.
 - ▶ NDR 200 cards arriving separately.
 - ▶ Required the ARC team to swap the cards.

Delays

- After installation, Lenovo identified that the as built power distribution board could not adequately supply power to the GPUs with the latest AMD firmware.
 - ▶ Performance reduction of 5 % to 10 %
 - ▶ Required replacement of power distribution board.

Operational issues

- Operating System Compatibility — requirements stated 'Nodes must support any Linux distribution ABI compatible with Red Hat Enterprise 8 and/or 9, and should ideally also support Ubuntu LTS.'
 - ▶ When shipped, the platform only supported Ubuntu 22.04 LTS.
 - ▶ Red Hat Enterprise 9.4 now supported (installed OS: AlmaLinux 9.4).
- ROCm installation/ROCM compatibility:
 - ▶ Installed latest ROCm.
 - ▶ Initial testing using ROCm Validation Suite were promising.
 - ▶ Running MI300X test configurations caused severe system crashes.
 - ▶ Setting a power cap helped, suggesting the PDB issue as cause.
 - ▶ However, response from AMD states that the systems are not currently supported by latest ROCm and indicates this as root cause of these crashed.

Conclusions

- Successful set up — no issues getting the GPUs to work.
- Ran test workloads almost immediately after installation.
- Significantly delayed delivery.
- Minor issues encountered throughout setup, likely due to the newness of the system — but these add up, impacting overall perception of the platform stability.
- The platform requires a very specific combination of firmware and driver versions. This was/is not clearly indicated by AMD's ROCm compatibility matrix — improvements are needed in the published information.

Conclusions

- Successful set up — no issues getting the GPUs to work.
- Ran test workloads almost immediately after installation.
- Significantly delayed delivery.
- Minor issues encountered throughout setup, likely due to the newness of the system — but these add up, impacting overall perception of the platform stability.
- The platform requires a very specific combination of firmware and driver versions. This was/is not clearly indicated by AMD's ROCm compatibility matrix — improvements are needed in the published information.
- Several months on though...
- System is now very stable
- Very much in active use with so far 24 users from 5 Institutions

Thank You!

Any Questions?